Objectives: Iloprost has the potential to protect the liver transplant graft before and during cold ischemia. We studied iloprost administration during organ procurement and reperfusion in an extra-corporeal pig liver perfusion model.
Materials and Methods: German Landrace pigs (n = 7/group; 22-26 kg each) were used as donors. Preservation was performed by aortic perfusion with 2L Bretschneiders’ Histidine-Tryptophan-Ketoglutarate solution HTK and cold ischemia time (4°C) 20 hours followed by normothermic extracorporeal perfusion for 8 hours. Untreated controls (1) were compared to iloprost (2) donor bolus-treatment (1 μg/kg body weight), (3) addition of iloprost to Bretschneiders´ Histidine-Tryptophan-Ketoglutarate solution HTK (0.0125 μg/mL), (4) continuous infusion during reperfusion (2 ng/kg/min), and (5) combined treatment (2) and (4).
Results: Iloprost donor treatment led to significantly higher bile production. Addition of iloprost to the preservation solution significantly improved hepatic artery perfusion and was accompanied by improve-ments of microcirculation and bile production. Iloprost reperfusion treatment alone significantly improved bile production. Enzyme levels were positively affected by all treatment regimens. Combined use of iloprost before and after ischemia improved hepatic artery flow and microcirculation and showed significantly lower hypoxia staining versus controls.
Conclusions: Iloprost donor treatment and use of iloprost in the preservation solution significantly improved graft perfusion and function. The effects of graft treatment seemed greater before than after reperfusion. Combined treatment did not reveal a synergistic advantage.
Key words : End-stage liver disease, Graft, Prostaglandin, Transplant
Introduction
The use of iloprost clinically and experimentally is widely accepted after liver transplant.1-4 However, although beneficial clinically and experimentally, its use in donor pretreatment is uncommon and the exact recommendations about type of application are pending.5-7
The purpose of this study was to compare 4 different iloprost treatment regimens to a control group and to determine their effect on liver injury and function after extended cold ischemia time (CIT) (20 h) in an isolated 8-hour extracorporeal pig liver perfusion model. The following parameters were assessed:
Materials and Methods
Animals and anesthesia
German Landrace pigs aged 10 to 16 weeks with a mean body weight (BW) 23.7 ±
1.56 kg (range, 22-26 kg) were used as organ donors. Animals were purchased (Fa.
Sommerfeld, Brandenburg, Germany) and housed in our animal facility located at
Charité Campus Virchow Klinikum, Berlin, Germany, approximately 1 week before
each experiment. Animals were examined after delivery and kept
species-appropriate with free access to water. Twice daily they were fed with
standard pig nutrition pellets (Mpig-H, Sniff Spezialitäten GmbH, Soest,
Germany) and housed at a day and night cycle of 12 hours and mean temperature
22°C. The animals fasted for 24 hours prior to donor operation with free access
to water. Standardized principles of laboratory animal care were followed,8 and
the studied complied with the current version of the German Law on the
Protection of Animals.
For anesthesia, each pig received a combined intramuscular injection with 5 mg/kg BW azaperone (Stresnil, Janssen-Cilag, Neuss, Germany), 10 mg/kg BW ketamine hydrochloride (Ursotamim, Serumwerk Bernburg AG, Germany) and 0.05 mg/kg BW atropine sulfate (Atropin, Fresenius Kabi Deutschland GmbH, Bad Homburg, Germany) as premedication. After the pig was recumbent, the ear vein was cannulated and 0.25 to 0.5 mg/kg BW etomidate (Etomidat-Lipuro, Braun, Melsungen, Germany) was administered intravenously as induction followed by 4 mg pancuronium bromide (Pavulon, Organon Teknika, Eppelheim, Germany). After endotracheal intubation, anesthesia was maintained by ventilation with oxygen and nitrous oxide (1:2) plus 1.5% to 1.8% isoflurane. A urinary catheter was placed and the external carotid artery was cannulated for blood gas analyses and blood pressure measurement.
Study design and dose
To mimic the clinical situation and potential clinical use, we administered
iloprost (Ilomedin, Bayer-Shering AG, Berlin, Germany) during organ explant (1
μg/kg BW) and reperfusion (2 μg/kg BW). According to previous clinical
experience, doses of 0.5 to 4 ng/kg BW/minute were used for continuous infusion
after liver transplant4,9 and acute limb ischemia.10
Because the positive effects achieved with 1 ng/kg BW/min were mild,4
and we knew from clinical experience that a dosage of 4 ng/kg BW/minute usually
was difficult to achieve because of adverse events,9 we used 2 ng/kg
BW/minute.
When planning the study, we knew that the pigs would have a mean BW 25 kg. After treatment for 8 hours (2 ng/kg BW/min), this would result in a total dose of 24 μg, which corresponded to a dose of 1 μg/kg BW. To test different methods of iloprost administration (preischemia, during reperfusion, and combined use), 5 study groups were arranged (Table 1).
Liver explant
After median laparotomy, ligature of the cystic duct, and cannulation of the
common hepatic duct, the pigs were heparinized with 10 000 IU and a perfusion
system was inserted into the infrarenal aorta. Animals in group 2 received an
intra-aortic bolus injection of iloprost (1 μg/ kg BW). At 1 minute after bolus
injection, the supraceliac aorta was ligated and perfusion was started with 2 L
cold (4°C) Bretschneiders’ Histidine-Tryptophan-Ketoglutarate (HTK) solution
(Custodiol, Dr. Koehler Chemie, Alsbach-Haehnlein, Germany). Additional topical
cooling was performed with 4°C cold saline. After liver explant, back table
cannulation of the hepatic artery and portal vein was performed. The liver was
stored at 4°C for CIT 20 hours.
Isolated extracorporeal reperfusion
Before starting extracorporeal reperfusion, all grafts were weighed and flushed
with 1 mL/g liver weight (LW) cold (4°C) plasma-isotonic electrolyte solution
(Basis- und Elektrolytlösung SH-BIC 35/SH-EL02,
B. Braun, Melsungen, Germany). The reperfusion solution consisted of previously
collected 2 L fully heparinized allogeneic porcine whole blood, 40 mg
tobramycin, 1.5 L plasma-isotonic electrolyte solution, and 500 mL hydroxyethyl
starch 6% (Voluven 6%, Fresenius Kabi Deutschland GmbH, Bad Homburg, Germany).
Extracorporeal reperfusion was performed for 8 hours. In the arterial system, a mean pressure 71 mm Hg was achieved, and pressure varied from 58 to 91 mm Hg. Pressure was controlled using a hydrostatic pressure transducer (Peter von Berg Extrakorporale Systeme-Medizintechnik GmbH, Kirechssnon/-Eglharting, Germany) attached to a monitor (HP 78534C, Hewlett and Packard GmbH, München, Germany). Roller pump 1 (defined as the whole system flow [WS] pump) pumped the perfusion fluid from the liver chamber, in which the liver floated freely in the perfusion medium fixed to connectors of lines to the hepatic artery and portal vein, to the perfusion medium reservoir. The perfusion medium level was held constant at 20 cm above the liver, regulated by adjustments of WS. The resulting perfusion pressure in the portal vein varied from 12 to 23 cm water column; mean pressure was 17.9 cm water column. Roller pump 2 pumped the perfusion medium through an oxygenator (Safe Mini, Jostra Polystan AG, Hirrlingen, Germany) to the hepatic artery. Oxygenation was realized by carbogen (95% oxygen and 5% carbon dioxide) insufflation to the oxygenator. This resulted in an arterial partial pressure of oxygen 350 to 550 mm Hg. Hepatic artery and portal vein flow were measured in mL/min with a flow meter.11,12 Bile production was monitored by collection in a calibrated 50-mL plastic vial attached to the liver chamber, and special attention was made not to bend the collecting tube (Figure 1).
Repeated measurements
The experimental time line is shown in Figure 2. Every hour the following
parameters were measured and recorded:
Assessment of microcirculation
The microcirculatory parameters (SO2, rHb, F, V) were assessed at
tissue depth 4 mm using a commercially available combined laser Doppler flow
meter and remission spectroscopy device (Oxygen-To-See [O2C], LEA
Medizintechnik, Giessen, Germany). The technique and reliability testing were
described previously.13-17 Microvascular blood flow (recorded in
arbitrary units [AU]) was derived from the power spectra of back scattered laser
light representing the distribution of Doppler shifts of the erythrocyte
velocities. The rHb and SO2 values were derived from light spectra
detected after tissue illumination and back scattering. Information was gathered
primarily from small arteries, capillaries, and venules as light that entered
vessels > 100 μm was completely absorbed.18 Most (85%) hemoglobin was
in the capillary venous compartment of the microcirculation, and measurements
with this spectrometer primarily reflected the capillary venous oxygen
saturation and capillary venous rHb. The fiber probe was gently placed on the
liver surface for 60 seconds and values were recorded every 2 seconds. Off-line
analysis was performed sub-sequently.
Explanation of measured parameters
Regional SO2 (capillary venous oxygen saturation [%]): Primarily
capillary venous oxygen saturation was measured, which was the amount of oxygen
bound to hemoglobin after distribution of oxygen into the tissue. This was the
area in the tissue where critical oxygen supply appeared first (defined as
lethal corner). In contrast with arterial oxygen saturation, the capillary
venous oxygen saturation showed the balance between oxygen delivery and
consumption. Therefore, the local oxygen measure-ment was a parameter to
determine the condition of local tissue hypoxia.
Regional hemoglobin (rHb [AU]): The hemoglobin values were relative values and reflected the filling of vessels or vessel density per catchment volume. It showed microvessel filling that was dependent on capillary density, capillary recruitment, and venous filling.
Regional flow (F [AU]): regional blood flow showed volume flow in relative units. The blood flow indicated ischemia or hyperemia.
Regional velocity (V [AU]): Regional blood flow velocity (arbitrary units).
Histologic analysis
At 5 different times, wedges of 1 mL liver tissue were collected and
immediately fixed in 10% formalin: (A) directly after donor laparotomy (prior to
preservation); (B) after 20 hours CIT (which was identical to 0 hours isolated
extracorporeal reperfusion [IECR]); (C) after 0.5 hours IECR; (D) after 2 hours
IECR, and (E) 8 hours IECR. Samples were processed and embedded in paraffin. The
sections (4-μm thick) were stained with hematoxylin-eosin. The slides were
analyzed blinded by a pathologist (TS). Histologic severity of injury was graded
according to a semiquantitative score (0, no injury; 3, severe injury) for 6
parameters (hepatocyte cell necrosis, activation of Kupffer cells, sinusoidal
dilation, congestion, diffuse hepatic injury, and endothelial damage) and the
scores were summed to provide a total score (total maximum score, 18).
At 1.5 hours after reperfusion, PIM (80 mg/kg LW) (Hypoxyprobe-1, Burlington, MA, USA) was added to the perfusion circuit. The method of immuno-histochemical analysis for PIM was described previously.19-21 Liver sections were deparaffinized with xylene and rehydrated using decreasing dilutions of ethanol and distilled water. A peroxidase blocking step was performed using 3% hydrogen peroxide for 15 min, followed by antigen retrieval. A monoclonal antibody for fluorescein isothiocyanate (FITC-Mab 1, Hypoxyprobe, Burlington, MA, USA) was used as the primary antibody (1:400) for 30 minutes. Horseradish peroxidase was used as the secondary antibody linked to rabbit anti-FITC immunoglobulin G at a dilution of 1:100 for 30 minutes. The slides were analyzed blinded by the pathologist (TS) according to a semiquantitative score (PIM staining: 0, none; 1, mild; 2, moderate; 3, severe).
Statistical analyses
Data were expressed as mean ± standard deviation (SD) for parametric data and
median with range for ordinal data. Analysis of variance (ANOVA) for repeated
measures and ANOVA on ranks for the ordinal data or parametric data that failed
normality test were used to analyze differences between groups. Values of P
≤ .05 were considered statistically significant.
Prospective power analysis (for ANOVA and P ≤ .05) with an expected 10% difference of means between groups and an expected SD 5% for a desired power ≥ 0.8 showed a study population of 7 pigs per group. Data processing and display were done using statistical software (Sigma Plot 2004 for Windows, Version 9.01, Systat Software, Inc., Chicago, IL, USA). For a clearer presentation, the hourly measurements were described only at distinct times, 2, 4, and 8 hours (for macro- and microcirculation, enzyme levels, and bile production) after beginning reperfusion. Significant differences between groups were marked in Figures 3 to 11.
Results
Macrocirculation
The WS flow was constant in all groups during the period of measurement.
Significant differences were observed between groups: at 2 hours, group 4 (3.27
± 0.98 mL/g LW/min) had significantly higher WS flow than group 3 (2.08 ± 0.51
mL/g LW/min) or group 5 (1.96 ± 0.30 mL/g LW/min). Group 4 at 4 hours (3.28 ±
0.96 mL/g LW/min) and 8 hours (2.89 ± 1.02 mL/g LW/min) showed significantly
higher values than all other treatment groups (group 2: 4 h, 2.10 ± 0.73 mL/g
LW/min; 8 hours, 2.12 ± 0.72 mL/g LW/min) (group 3: 4 hours, 2.05 ± 0.46 mL/g
LW/min; 8 hours, 1.63 ± 0.27 mL/g LW/min) (group 5: 4 hours, 2.06 ± 0.34 mL/g
LW/min; 8 hours, 1.85 ± 0.36 mL/g LW/min) (control group: 4 hours, 2.33 ± 1.00
mL/g LW/min; 8 hours, 1.96 ± 0.52 mL/g LW/min) (Figure 3).
After 2 hours, significantly higher hepatic artery flow was observed in group 3 (24.0% ± 5.9% WS flow) than the control group (15.1% ± 2.6 %WS flow) or group 4 (13.3% ± 5.0% WS flow). Group 5 (19.61% ± 4.72% WS flow) also showed significantly higher hepatic artery flow than the control group. After 4 hours IECR, results were similar. Modification of HTK caused significantly increased hepatic artery flow (24.9% ± 5.2% WS flow) compared with the control group (17.4% ± 5.6% WS flow) or reperfusion treatment (14.6% ± 6.2% WS flow). After 8 hours, group 3 (23.7% ± 7.0% WS flow) had significantly higher hepatic artery flow than control (12.6% ± 4.6% WS flow), group 2 (14.7% ± 5.5% WS flow), or group 4 (10.0% ± 3.8% WS flow), and group 5 (18.94% ± 4.23% WS flow) had significantly higher hepatic artery flow than group 1 or group 4 (Figure 4).
In contrast, portal vein flow after 2 hours was significantly higher in the control (84.9% ± 2.6% WS flow) and reperfusion treatment groups (86.7% ± 5.0% WS flow) than group 3 (76.0% ± 5.9% WS flow) (Figure 5). After 4 hours, portal vein flow was significantly higher in group 4 (85.4% ± 6.2% WS flow) than group 3 (75.1% ± 5.2% WS flow). At the end of IECR (8 h), portal vein flow was significantly greater in group 4 (90.0% ± 3.8% WS flow) than group 5 (81.06% ± 4.23% WS flow) or group 3 (76.3% ± 7.0% WS flow), and greater in group 1 (87.4 ± 4.6) than group 2 (85.3% ± 5.5% WS flow) or group 3 (76.3% ± 7.0% WS flow).
Microcirculation
Off-line analysis of microcirculatory values revealed artifacts that
necessitated exclusion before statistical analysis. For analysis, blocks of 10
corresponding artifact-free values were used.
Regional capillary venous oxygen saturation
At 2 hours after reperfusion, no significant differences between groups were
found in capillary venous SO2. Capillary venous SO2 was
significantly higher in the reperfusion treatment group than all other groups
after 4 hours IECR. At 8 hours reperfusion, livers pretreated with modified HTK
solution had significantly higher SO2 than all other groups. Livers
treated with continuous iloprost administration during reperfusion had
significantly higher SO2 values than livers of the control group or
livers treated with combination before explant and during reperfusion (group 5)
(Figure 6).
Regional hemoglobin
At 2 hours, rHb was significantly higher in the combination treatment group
(group 5) than all other groups. At 4 hours after reperfusion, the control group
had significantly higher rHb than group 2 or the combination treatment group
(group 5), but group 5 had significantly higher values than group 2 or group 3.
Continuous treatment during reperfusion (group 4) caused significantly higher
values than in group 2. At the end of IECR (8 h), rHb was significantly higher
in group 5 than all other groups (Figure 6).
Regional blood flow
At 2 hours after start of IECR, microcirculatory blood flow was significantly
higher in treatment group 2 than all other groups. At 4 hours, group 5 had the
highest blood flow values, significantly higher than the control group (group 1)
or donor pretreatment group (group 2). At the end of IECR, varied significant
differences were observed; group 4 had higher F than all other groups; group 3
had higher F than the control group or group 5; and the donor pretreatment group
(group 2) had higher F than the control or combination treatment group (Figure
6).
Regional blood flow velocity
At 2 hours IECR, V was significantly higher in livers in group 2 (donor) than
livers treated continuously during reperfusion (group 4). After 4 hours, group 5
(combination treatment) had significantly higher V than group 2. At the end of
IECR, group 3 (modified HTK) had significantly higher V than group 2 or group 5,
and group 4 had significantly higher V than group 5 (Figure 6).
Oxygen consumption
At 2 hours, oxygen consumption was significantly greater with reperfusion
treatment (31.5 ± 8.5 μL/g LW/min) than control (18.8 ± 9.4 μL/g LW/min), HTK
(20.2 ± 7.1 μL/g LW/min), or combined treatment (16.0 ± 6.3 μL/g LW/min). At 4
hours IECR, similar significant differences were observed; oxygen con-sumption
was greater with reperfusion treatment (32.9 ± 10.6 μL/g LW/min) than control
(21.0 ± 11.0 μL/g LW/min), HTK (19.7 ± 6.1 μL/g LW/min), or combined treatment
(21.5 ± 3.1 μL/g LW/min). At 8 hours, reperfusion treatment showed significantly
higher oxygen consumption (30.1 ± 10.7 μL/g LW/min) than all other groups:
control (18.5 ± 4.7 μL/g LW/min), donor bolus treatment (21.6 ± 9.3 μL/g
LW/min), HTK (17.5 ± 3.0 μL/g LW/min), or combined treatment (20.4 ± 3.0 μL/g
LW/min) (Figure 7).
General hepatic function and bile production
At 2 hours, grafts of group 2 (0.17 ± 0.03 μL/g LW/min) and group 4 (0.18 ± 0.06
μL/g LW/min) produced significantly more bile than the control group (0.09 ±
0.05 μL/g LW/min). No significant difference was observed between the treatment
groups. After 4 hours, significantly more bile production was observed in group
4 (0.20 ± 0.06 μL/g LW/min) than the control group (0.08 ± 0.07 μL/g LW/min) or
group 5 (0.12 ± 0.08 μL/g LW/min). In addition, group 3 (0.17 ± 0.09 μL/g
LW/min) had significantly more bile production than the control group. At 8
hours IECR, significantly more bile production was observed with livers of group
3 (0.07 ± 0.03 μL/g LW/min) or 4 (0.09 ± 0.03 μL/g LW/min) than the control
group (0.04 ± 0.02 μL/g LW/min) (Figure 8).
Hepatic injury measure with release of enzymes into perfusion medium
Levels of ALAT were lower at all times in treated grafts than the control group.
At 2 hours, the control group (6.26 ± 1.82 U/L/100 g LW) had significantly
higher values than all treatment groups: group 2 (1.74 ± 0.78 U/L/100 g LW),
group 3 (2.77 ± 1.08 U/L/100 g LW), group 4 (3.69 ± 2.30 U/L/100 g LW), or group
5 (2.15 ± 1.09 U/L/100 g LW). At 2 hours, donor pretreatment showed
significantly lower levels than reperfusion treatment. At 4 hours, after
starting reperfusion, there were no significant differences between the
treatment groups, but ALAT levels were significantly greater in the control
(4.58 ± 2.51 U/L/100 g LW) than all treatment groups: group 2 (2.27 ± 0.82
U/L/100 g LW), group 3 (3.25 ± 1.30 U/L/100 g LW), group 4 (4.12 ± 2.32 U/L/100
g LW), or group 5 (2.51 ± 1.14 U/L/100 g LW). At 8 hours, a significant
difference was observed only between the control group (6.26 ± 3.20 U/L/100 g
LW) and group 2 (2.89 ± 1.19 U/L/100 g LW) (Figure 9).
Hepatic injury evaluated with histology
Evaluation with hematoxylin-eosin stain showed that liver injury increased with
increased time of IECR. There were no statistically significant differences
between groups. At 0.5 hours IECR, all treatment groups had less damage. The
same was observed after 2 hours IECR. At the end of IECR, this pattern
persisted, except for group 3 that had values almost as high as the control
group (Figure 10).
With PIM staining (median [range]), combined treatment (1 [0-2]) showed significantly less PIM staining than control (2.5 [2-3]) at 8 hours IECR. Donor treatment and combined treatment did not show significant differences in PIM staining with time; however, all other groups showed significant differences with time: control at 2 hours IECR (2.5 [1-3]) and 8 h IECR (2.5 [2-3]) vs postlaparotomy (0 [0-0]) and after 20 hours CIT (0 [0-1]); HTK at 2 hours (2 [1-2]) and 8 hours (2 [0-2]) versus post-laparotomy (0 [0-0]); and reperfusion treatment at 8 hours (1 [1-2]) versus postlaparotomy (0 [0-0]). Mild PIM staining was recognized sporadically in biopsies taken before PIM application to the reperfusion circuit (Figure 11). Examples of histologic slides with PIM staining were shown in Figure 12.
Discussion
In the past, different experimental and clinical approaches were applied to protect or recover liver grafts from ischemia-reperfusion injury. A variety of clinical studies showed benefits of prostaglandin treatment with respect to enzyme release and occurrence of initial poor function and nonfunction. The use of prostaglandins is accepted widely after clinical and experimental liver transplant.1-3 However, prostaglandin use as liver donor treatment, although beneficial clinically5 and experimentally,6,7 is uncommon, and the recommended dosage and type of application are unknown.
The present study provided an overview of 4 different kinds of iloprost treatment and their effects on hepatic injury and function following extended cold ischemia. According to Gores and coworkers, the viability of extracorporeally perfused rat livers ranges, under optimal conditions, up to 6 hours.22 In contrast, Yamamoto and associates reported a 72 hour successful pig liver perfusion under hypothermic conditions.23 Since bile production as a marker of graft function in our model was reduced after 4 hours in all groups, the interpretation of all results obtained from measurements beyond this threshold must be performed with caution.
Although there is evidence provided by this and many other studies that prostaglandins act at a microvascular level, the beneficial action of prostag-landins also may be, in part, due to a macrovascular effect. The intense vasospasm caused by cold perfusion may diminish homogeneity of organ perfusion with preservation solution. As a result of modification of preservation solution, we were able to show a significantly higher percentage of hepatic artery flow than control and reperfusion treatment. Combined donor bolus and reperfusion treatment showed this effect for the entire 8 hours IECR.
Bile production is a suitable index to assess the extent of ischemic liver injury and enables the estimation of general graft function.24,25 Conditioning of liver grafts by bolus treatment with prostaglandins previously has been demonstrated to improve hepatic bile production.6 Additionally, it was shown that the higher amount of bile production is not due to increased paracellular permeability, but is based on markedly improved bile acid output.26 We detected more bile production in grafts of pretreated donors and donors that had administration during reperfusion. This effect was not observed when both treatments were combined. Although bile production was significantly increased after donor treatment (2 hours), the effect of donor treatment decreased after 2 hours. The HTK treatment showed beneficial effects on bile production at 4 and 8 hours of reperfusion. Reperfusion treatment showed sig-nificantly higher bile production during the whole reperfusion period. Bile production was triggered mostly by portal venous flow. Combination treatment (donor and reperfusion) had no additional effect on bile production but minimized it. Taking the macroscopic hemodynamic measurements into account, it seemed that application of iloprost during reperfusion could not develop full potency after donor treatment was performed. The effects of higher hepatic artery flow dominated (via hepatic autoregulatory mechanisms27) the reperfusion treatment effects on portal vein flow. Our observations of oxygen consumption underscored this finding. Oxygen consumption was significantly higher in reperfusion treatment than control, HTK, or combination treatment after 2 and 4 hours or donor treatment after 8 hours IECR. After 4 hours, bile production in all groups was markedly reduced. Nevertheless, HTK modification and reperfusion treatment showed significantly higher bile production than control.
The significantly lower release of transaminases after preconditioning liver grafts with prostaglandins has been described earlier in clinical5 and expe-rimental studies.5,7 Furthermore, prostaglandin treatment administered after transplant showed lower levels of aspartate aminotransferase and ALAT in a clinical setting.28 With our IECR model, we could reproduce this finding, and all tested iloprost treatment regimens significantly reduced ischemia-reperfusion injury. Moreover, donor treatment was significantly more protective concerning ALAT release than reperfusion treatment at 2 hours. After 8 hours, donor treatment was the only regimen that still showed significantly lower injury than the control group.
To understand the benefits of prostaglandin treatment, several experimental approaches have been used, especially to understand its role in preventing microcirculatory disturbances.6 In the present study, we tested a method of microcirculation assessment that combined laser Doppler flow and remission spectroscopy. Off-line analysis of recorded micro-circulation values revealed large variation and many artifacts, indicating that this technique was not easy to use in the present arrangement, but required training and patience. Nevertheless, this technique reflected the effect of iloprost on microcirculation by showing significant differences between treatment groups and the control group and between the different treatment groups. This method has not been used in pig IECR thus far, but measurements in mouse livers13 and pig15 and human29 intestinal mucosa during sepsis episodes have been per-formed, providing evidence that microcirculatory disturbances can be measured. Ischemia-reperfusion, reflected by compromised nutritional perfusion and leukocyte adherence, can be decreased significantly by prostacyclin donor bolus pretreatment, as shown previously in a rat liver transplant model using intravital microscopy for microcirculatory measure-ments.6 The findings of the present study were consistent with this finding and provided further information, because our data showed that microcirculatory perfusion of iloprost treatment groups was significantly improved compared with controls. Reperfusion treatment and addition of iloprost to HTK (group 3) revealed the highest capillary venous oxygen saturation. Regional flow at 2 hours as a marker to distinguish between ischemia and hyperemia revealed a clear benefit of donor treatment compared with all other groups.
Prostaglandins have been shown previously in a rat liver IECR model to protect endothelial cells from damage when administered during reperfusion.30 We also observed a protective effect, although histologic analysis of slides stained with hematoxylin-eosin did not reveal statistically significant differences between the treatment groups. However, PIM staining revealed interesting results. The PIM staining is a well established hypoxia marker in studies with animal livers.31-34 After intravenous injection, PIM, a 2-nitroimidazole, binds to thiol groups of proteins in tissues with oxygen tensions < 10 mm Hg,20 where it can be detected with commercially available anti-PIM antibodies. To our knowledge, this method was not used previously in extracorporeal pig liver perfusion. Combined treatment showed significantly less PIM staining compared with control at 8 hours IECR. Donor bolus treatment and combined treatment did not show significant differences in PIM staining with time, but all other groups had differences. Thus, it appears that both kinds of application provided the best protection against tissue hypoxia among all groups.
In conclusion, iloprost donor treatment and the use of iloprost in the preservation solution may significantly improve graft perfusion, injury, and function. Intra-aortic donor treatment seems to be the best type of treatment, followed by modified HTK. The effects of graft treatment were greater before than after ischemia, which is the most common clinical use of prostaglandins. Combined use of iloprost before and after ischemia showed no synergistic advantages. Future research may evaluate whether a combination of donor treatment and addition to the preservation solution or donor treatment combined with a later onset of reperfusion treatment may improve the protective effect.
References:
Volume : 13
Issue : 1
Pages : 51 - 61
DOI : 10.6002/ect.2014.0148
From the 1Transplant Surgery Charité Humboldt-University, Berlin;
and the 2Institute for Applied Pathology, Speyer, Germany
Acknowledgements: The authors declare that they have no sources of
funding for this study, and they have no conflicts of interest to declare.
Corresponding author: Dr. med. Wenzel Schoening, Charité CVK, Department
of Transplant Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
Phone: +49 30 450 652 226 Fax: +49 30 450 552 900
E-mail:
wenzel.schoening@charite.de
Table 1. Comparison of the Groups
Figure 1. Diagram of the Isolated Extracorporeal Perfusion Circuit
Figure 2. Experimental Time Line
Figure 3. Whole System Flow
Figure 4. Hepatic Artery Flow
Figure 5. Portal Venous Flow
Figure 6. Microcirculatory Parameters
Figure 7. Oxygen Consumption
Figure 8. Bile Production
Figure 9. Alanine Aminotransferase Release
Figure 10. Semiquantitative Score of Histologic Alterations vs Time
Figure 11. Semiquantitative Score of Pimonidazole Staining Before and After Ischemia and During Isolated Extracorporeal Reperfusion
Figure 12. Pimonidazole Staining of Liver Slides from Groups 1 and 3 at Different Times